Adaptive spline fitting with particle swarm optimization
نویسندگان
چکیده
منابع مشابه
Adaptive particularly tunable fuzzy particle swarm optimization algorithm
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
متن کاملAdaptive range particle swarm optimization
This paper proposes a new technique for particle swarm optimization called adaptive range particle swarm optimization (ARPSO). In this technique an active search domain range is determined by utilizing the mean and standard deviation of each design variable. In the initial search stage, the search domain is explored widely. Then the search domain is shrunk so that it is restricted to a small do...
متن کاملFuzzy adaptive catfish particle swarm optimization
The catfish particle swarm optimization (CatfishPSO) algorithm is a novel swarm intelligence optimization technique. This algorithm was inspired by the interactive behavior of sardines and catfish. The observed catfish effect is applied to improve the performance of particle swarm optimization (PSO). In this paper, we propose fuzzy CatfishPSO (F-CatfishPSO), which uses fuzzy to dynamically chan...
متن کاملAdaptive division of labor particle swarm optimization
Although evident progress and considerable achievements have been attained in developing a new particle swarm optimization (PSO) algorithm, successfully balancing the exploration and exploitation capabilities of PSO to determine high-quality solutions for complex optimization problems remains a fundamental challenge. In this study, we propose a new PSO variant, namely, adaptive division of labo...
متن کاملPerformance-dependent Adaptive Particle Swarm Optimization
The swarm collective behaviors, such as birds flocking and fish schooling, are complex, dynamic and adaptive processes, in which the differences among individuals play an important role. As a new swarm intelligent technique, the standard particle swarm optimization only provides a simple uniform control, omitting the above mentioned phenomenon entirely. Thus, a new modified version: performance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2020
ISSN: 0943-4062,1613-9658
DOI: 10.1007/s00180-020-01022-x